Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Med ; 122: 103339, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38718703

RESUMO

PURPOSE: OAR delineation accuracy influences: (i) a patient's optimised dose distribution (PD), (ii) the reported doses (RD) presented at approval, which represent plan quality. This study utilised a novel dosimetric validation methodology, comprehensively evaluating a new CT-scanner-based AI contouring solution in terms of PD and RD within an automated planning workflow. METHODS: 20 prostate patients were selected to evaluate AI contouring for rectum, bladder, and proximal femurs. Five planning 'pipelines' were considered; three using AI contours with differing levels of manual editing (nominally none (AIStd), minor editing in specific regions (AIMinEd), and fully corrected (AIFullEd)). Remaining pipelines were manual delineations from two observers (MDOb1, MDOb2). Automated radiotherapy plans were generated for each pipeline. Geometric and dosimetric agreement of contour sets AIStd, AIMinEd, AIFullEd and MDOb2 were evaluated against the reference set MDOb1. Non-inferiority of AI pipelines was assessed, hypothesising that compared to MDOb1, absolute deviations in metrics for AI contouring were no greater than that from MDOb2. RESULTS: Compared to MDOb1, organ delineation time was reduced by 24.9 min (96 %), 21.4 min (79 %) and 12.2 min (45 %) for AIStd, AIMinEd and AIFullEd respectively. All pipelines exhibited generally good dosimetric agreement with MDOb1. For RD, median deviations were within ± 1.8 cm3, ± 1.7 % and ± 0.6 Gy for absolute volume, relative volume and mean dose metrics respectively. For PD, respective values were within ± 0.4 cm3, ± 0.5 % and ± 0.2 Gy. Statistically (p < 0.05), AIMinEd and AIFullEd were dosimetrically non-inferior to MDOb2. CONCLUSIONS: This novel dosimetric validation demonstrated that following targeted minor editing (AIMinEd), AI contours were dosimetrically non-inferior to manual delineations, reducing delineation time by 79 %.

2.
Radiat Oncol ; 19(1): 45, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589961

RESUMO

BACKGROUND: Current automated planning solutions are calibrated using trial and error or machine learning on historical datasets. Neither method allows for the intuitive exploration of differing trade-off options during calibration, which may aid in ensuring automated solutions align with clinical preference. Pareto navigation provides this functionality and offers a potential calibration alternative. The purpose of this study was to validate an automated radiotherapy planning solution with a novel multi-dimensional Pareto navigation calibration interface across two external institutions for prostate cancer. METHODS: The implemented 'Pareto Guided Automated Planning' (PGAP) methodology was developed in RayStation using scripting and consisted of a Pareto navigation calibration interface built upon a 'Protocol Based Automatic Iterative Optimisation' planning framework. 30 previous patients were randomly selected by each institution (IA and IB), 10 for calibration and 20 for validation. Utilising the Pareto navigation interface automated protocols were calibrated to the institutions' clinical preferences. A single automated plan (VMATAuto) was generated for each validation patient with plan quality compared against the previously treated clinical plan (VMATClinical) both quantitatively, using a range of DVH metrics, and qualitatively through blind review at the external institution. RESULTS: PGAP led to marked improvements across the majority of rectal dose metrics, with Dmean reduced by 3.7 Gy and 1.8 Gy for IA and IB respectively (p < 0.001). For bladder, results were mixed with low and intermediate dose metrics reduced for IB but increased for IA. Differences, whilst statistically significant (p < 0.05) were small and not considered clinically relevant. The reduction in rectum dose was not at the expense of PTV coverage (D98% was generally improved with VMATAuto), but was somewhat detrimental to PTV conformality. The prioritisation of rectum over conformality was however aligned with preferences expressed during calibration and was a key driver in both institutions demonstrating a clear preference towards VMATAuto, with 31/40 considered superior to VMATClinical upon blind review. CONCLUSIONS: PGAP enabled intuitive adaptation of automated protocols to an institution's planning aims and yielded plans more congruent with the institution's clinical preference than the locally produced manual clinical plans.


Assuntos
Neoplasias da Próstata , Radioterapia de Intensidade Modulada , Masculino , Humanos , Radioterapia de Intensidade Modulada/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Bexiga Urinária , Neoplasias da Próstata/radioterapia , Órgãos em Risco
3.
Radiother Oncol ; 141: 220-226, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31526670

RESUMO

BACKGROUND AND PURPOSE: Current automated planning methods do not allow for the intuitive exploration of clinical trade-offs during calibration. Recently a novel automated planning solution, which is calibrated using Pareto navigation principles, has been developed to address this issue. The purpose of this work was to clinically validate the solution for prostate cancer patients with and without elective nodal irradiation. MATERIALS AND METHODS: For 40 randomly selected patients (20 prostate and seminal vesicles (PSV) and 20 prostate and pelvic nodes (PPN)) automatically generated volumetric modulated arc therapy plans (VMATAuto) were compared against plans created by expert dosimetrists under clinical conditions (VMATClinical) and no time pressures (VMATIdeal). Plans were compared through quantitative comparison of dosimetric parameters and blind review by an oncologist. RESULTS: Upon blind review 39/40 and 33/40 VMATAuto plans were considered preferable or equal to VMATClinical and VMATIdeal respectively, with all deemed clinically acceptable. Dosimetrically, VMATAuto, VMATClinical and VMATIdeal were similar, with observed differences generally of low clinical significance. Compared to VMATClinical, VMATAuto reduced hands-on planning time by 94% and 79% for PSV and PPN respectively. Total planning time was significantly reduced from 22.2 mins to 14.0 mins for PSV, with no significant reduction observed for PPN. CONCLUSIONS: A novel automated planning solution has been evaluated, whose Pareto navigation based calibration enabled clinical decision-making on trade-off balancing to be intuitively incorporated into automated protocols. It was successfully applied to two sites of differing complexity and robustly generated high quality plans in an efficient manner.


Assuntos
Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Masculino , Dosagem Radioterapêutica
4.
Phys Imaging Radiat Oncol ; 10: 41-48, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33458267

RESUMO

BACKGROUND AND PURPOSE: Current automated radiotherapy planning solutions do not allow for the intuitive exploration of different treatment options during protocol calibration. This work introduces an automated planning solution, which aims to address this problem through incorporating Pareto navigation techniques into the calibration process. MATERIALS AND METHODS: For each tumour site a set of planning goals is defined. Utilising Pareto navigation techniques an operator calibrates the solution through intuitively exploring different treatment options: selecting the optimum balancing of competing planning goals for the given site. Once calibrated, fully automated plan generation is possible, with specific algorithms implemented to ensure trade-off balancing of new patients is consistent with that during calibration. Using the proposed methodology the system was calibrated for prostate and seminal vesicle treatments. The resultant solution was validated through quantitatively comparing the dose distribution of automatically generated plans (VMATAuto) against the previous clinical plan, for ten randomly selected patients. RESULTS: VMATAuto yielded statistically significant improvements in: PTV conformity indices, high dose bladder metrics, mean bowel dose, and the majority of rectum dose metrics. Of particular note was the reduction in mean rectum dose (median 25.1 Gy vs. 27.5 Gy), rectum V24.3Gy (median 41.1% vs. 46.4%), and improvement in the conformity index for the primary PTV (median 0.86 vs. 0.79). Dosimetric improvements were not at the cost of other dose metrics. CONCLUSIONS: An automated planning methodology with a Pareto navigation based calibration has been developed, which enables the complex balancing of competing trade-offs to be intuitively incorporated into automated protocols.

5.
Phys Med ; 32(1): 188-96, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26748961

RESUMO

Three methods of transit dosimetry using Electronic Portal Imaging Devices (EPIDs) were investigated for use in routine in-vivo dosimetry for cranial stereotactic radiosurgery and radiotherapy. The approaches examined were (a) A full Monte Carlo (MC) simulation of radiation transport through the linear accelerator and patient; (b) Calculation of the expected fluence by a treatment planning system (TPS); (c) Point doses calculated along the central axis compared to doses calculated using parameters acquired using the EPID. A dosimetric comparison of each of the three methods predicted doses at the imager plane to within ±5% and a gamma comparison for the MC and TPS based approaches showed good agreement for a range of dose and distance to agreement criteria. The MC technique was most time consuming, followed by the TPS calculation with the point dose calculation significantly quicker than the other methods.


Assuntos
Radiometria/métodos , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Encéfalo/efeitos da radiação , Calibragem , Desenho de Equipamento , Humanos , Método de Monte Carlo , Aceleradores de Partículas , Garantia da Qualidade dos Cuidados de Saúde , Doses de Radiação , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Reprodutibilidade dos Testes , Crânio/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA